THERMODYNAMICS-II (ME-221)

Pre-requisite: None Credit Hours: 03 Contact Hours: 48

RECOMMENDED BOOK(S)

AppliedThermodynamicsforEngineeringTechnologists,byT.D.EastopandA.McConkey Thermodynamics, anEngineering Approach, By YunusA. Cengel,MichaelA.BolesMcGraw-Hill

FundamentalsofEngineeringThermodynamics, byM.J.Moranand H.O.Shapiro,JohnWiley&Sons

REFERENCE BOOK(S)

Fundamentals of Thermodynamics, By Sonntang, Borgnakke, Van Wylen John Wiley & Sons

COURSE OBJECTIVES

Tointroduceturbo-machinery (Turbines, compressors and engine setc.)

Tostudythebehaviorofidealandrealgasmixtures.

Understandingofdifferentthermodynamicsystemsandtodeal with realworldengineering problems inorder toimprovetheperformance of such systems

S. No.	CLO/PLOS MAPPING	DOMAIN	PLO
1	Analyze the combustion reactions of different air-fuel mixtures and their enthalpy of formation.	C4	02
2	Compare and Contrast technical processes in compressors, Boiler, Nozzles and Turbines, as well as important cycles such as those in different engineering components.	C4	04
3	Explain and discuss internal combustion engines, its parts and its types.	C2	02

COURSE CONTENTS

Mixture with chemical reaction: Combustion reaction equations, stoichiometric chemical reaction, air-fuel ratio, rich and lean mixtures, enthalpy of formation.

Compressors: classification and working principles, single stage and multi stage Compressor compressors, inter-cooling, efficiencies and P-V diagrams of velocity diagrams of centrifugal compressors, Reciprocating performance characteristics and working regimes.

Boilers: generation of steam through boilers, classification and configurations of boilers and their applications, boiler efficiencies and heat balance sheet.

Nozzles: Introduction to nozzles, flow through steam nozzle and its efficiencies, their classification working principles.

Turbines: Steam turbine, their classification & working principles.

Introduction to internal combustion engines: Two and four-stroke engines, SI and CI engines, carburetion and fuel injection system.